|
pyoculus 0.1.1
|
Fortran module for SPEC problems, computing geometry relevant quantities. More...
Functions/Subroutines | |
| subroutine | get_xyz (stz, rpz) |
| Compute Cartisian coordinates based on toroidal coordinates \((s,\theta,\zeta)\). | |
| subroutine | get_metric_interface (ioi, theta, zeta, dr, dz, guvij, sg, ideriv) |
Fortran module for SPEC problems, computing geometry relevant quantities.
Igeometry=1, slab geometry \( \mathbf{x} = R(\theta, \zeta) \mathbf{i} + \mbox{rpol} \times \theta \mathbf{j} + \mbox{rtor} \times \zeta \mathbf{j} \)
get_xyz returns \((R, \mbox{dummy}, \mbox{dummy}) \)
Igeometry=2, cylindrical geometry
Something
Igeometry=3, toroidal geometry | subroutine speccoords::get_metric_interface | ( | integer, intent(in) | ioi, |
| real(kind=real_kind), intent(in) | theta, | ||
| real(kind=real_kind), intent(in) | zeta, | ||
| real(kind=real_kind), dimension(0:3,0:3,0:3), intent(out) | dr, | ||
| real(kind=real_kind), dimension(0:3,0:3,0:3), intent(out) | dz, | ||
| real(kind=real_kind), dimension(3,3,0:2), intent(out) | guvij, | ||
| real(kind=real_kind), dimension(0:2), intent(out) | sg, | ||
| integer, intent(in) | ideriv ) |
| subroutine speccoords::get_xyz | ( | real(kind=real_kind), dimension(1:3), intent(in) | stz, |
| real(kind=real_kind), dimension(1:3), intent(out) | rpz ) |
Compute Cartisian coordinates based on toroidal coordinates \((s,\theta,\zeta)\).
| [in] | stz | \((s,\theta,\zeta)\) |
| [out] | rpz | the Cartesian coordinates, depending on Igeometry |